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Electronic properties and many-body effects in quantum dots
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Abstract. We investigate the shell structure and electron-electron interaction in planar quantum
dots within the density functional theory. We observe that the Coulomb repulsion does not alter
the shell structure when the dot is symmetric in the two-dimensional (2D) plane. If the dot is
asymmetric, no pre-determined shell structure emerges except when Coulomb repulsion leads
to accidental Coulomb degeneracies. Our investigations on double-quantum dots reveal double
electron charging for weak inter-dot coupling, and a significant spin polarization in accordance
with Hund's rule. Both these features disappear when interdot coupling is made stronger.

Introduction

Zero-dimensional (OD) systems, such as quantum dots have been the subject of intense
research in recent years [ 1-41, owing to novel fundamental physical phenomena as well as
their potential for many exciting applications in optics and electronics [5-7 1. In this work,
we investigate the influence of the confining potential and electron-electron interaction in
the formation of shell structure in single planar quantum dots (PQD), and the role of many
body interaction, especially the effect of electron spin, on the charging behavior of coupled
PQDs. Planar quantum dots are defined by electrostatically depleting a two-dimensional
electron gas beneath negatively biased metal gates on top of the stucture. We consider
two PQD configurations: a square-gate dot which, when empty, has a nearly circularly
symmetric confining potential, and a quad-gate dot which has a rectangular symmetry.
Additionally, we investigate the charging properties of a double PQD.

1 Dot structures

The devices investigated here are shown in Fig. I (notice the y-axis is in the vertical
direction). They consist of an inverted GaAs/A10 .3 Ga0 .7As heterostructure which confines
the electrons to a 2D gas at the interface. In our model, the simulated structure consists of
a 22.5-nm layer of undoped A10. 3 Gao.7As, followed by a 125-nm layer of undoped GaAs
and finally an 18 nm GaAs cap layer. The cap layer is uniformly doped to 5 x 1018 cm- 3 so
that the conduction band edge is just above the Fermi level at the GaAs-cap layer-undoped
GaAs boundary. The inverted heterostructure is grown on a GaAs substrate and charge
control is achieved by varying the voltage on the back gate, Vback. The first quantum dot
shown in Fig. 1(a) has a 240x240 nm 2 square open area at the top bordered by a 65-nm
thick gate. The quad-gate device shown in Fig. 1 (b) has four gate pads with 45-nm stubs
protruding into the channel; the dimensions of the open area on the top are 230 x408 nm 2 .
The separation between the pads along the (longer) z-direction is 90-nm. The schematic
of the coupled dot structure is shown in Fig. 1 (c). The two dots are defined by biasing the
ten metallic gates, with the coupling between them varied by means of the voltage, V,, on
the tuning gates.

7



8 Quantum Wires and Quantum Dots

(a) (b)
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Fig. 1. Schematic representation of (a) a square and (b) a quad gate quantum dot device with layer
structure (c). Schematic representation along the x - z plane.

2 Computational model

In order to study the electronic properties of the quantum dot, the 3D Schrddinger and Pois-
son equations are solved for the central OD region within the density functional theory [ 1.
The Hamiltonian (Ht and/t 4 for spin " and spin 4, electrons, respectively) is given by:

= - V [-- V ] + E,.(r) + -/. t ' ] ([)

where m*(r) is the position dependent effective mass of the electron in the different ma-
terials, Ej(r) = 0(r) + AEo, the conduction band edge, where 0•(r) is the electrostatic
potential, and A Eo the conduction band offset. /,tH.() [n, • ], the exchange and correla-
tion potential, is a functional of the total electron density n(r) (= n0' (r) + n4'(r)) and the
spin polarization parameter n = " n((r) and has been parametrized by Ceperley and
Alder 1].

The 3D Poisson equation for the electrostatic potential 0 (r) reads:

V[E(r)V0(r)j = -p(r) (2)

where, the charge density p(r) is given by e[p(r) - n(r) + N+(r) - Na(r)j. Here, E(r)
is the permittivity of the material and a function of y- only throughout this work, p(r)
the hole concentration, n(r) the total electron concentration, and N+ (r) and Na (r) the
ionized donor and acceptor concentrations, respectively.

The Schrddinger equation is solved self-consistently with the Poisson equation by the
Iterative Extraction Orthogonalization Method (IEOM) [ 1. A detailed discussion of
these methods and as well as the schemes employed to determine the number of electrons
at equilibrium may be found in references [ I and [ 1.
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Fig. 2. Variation of the single-particle energy levels with Vback for the square-gate dot. The zero
of the energy scale corresponds to the Fermi level. The inset shows the schematic of the energy
spectrum for the empty (N = 0) dot with level ordering.
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Fig. 3. Variation of the single-particle energy levels with Vback for the square-gate dot. The zero
of the energy scale is the Fermi level. The inset shows the schematic of the energy spectrum for
the empty (N = 0) dot with level ordering.



10 Quantum Wires and Quantum Dots

3 Results

3. ] Single quantum dots: shell structure vs. electron-electron interaction

It is well known that the conduction band edge for a grid-gate dot is quasi-parabolic at low
energies for N = 0 [ , ].

The evolution of the single-particle energy levels as a function of Vback is illustrated in
Fig. 2 which shows a staircase variation of the first ten levels. Individual spin states have
not been resolved in this diagram. It is seen that at Vback = 0.985 V the levels are well
separated, but when the ground state, (0, 0, 0) [ ], crosses the Fermi level, it "sticks" to
this levels over a voltage range which corresponds to the charging of the first two electrons
in the dot. This produces a change in slope of the upper levels which remain well separated
from the first level. Meanwhile, the third and fourth levels which are respectively threefold
and fourfold degenerate, and accomodate up to 6- and 8-electrons, each split into two
new levels. This effect is due to the Coulomb interaction between carriers which induces
some anharmonicity in the confining potential and lifts the degeneracy of the (101)-state
with the (200)- and (002)-states, on one hand, and the degeneracy of the (201)- and (102)-
states with the (003)- and (300)-states on the other (Fig. 2 inset). However, because of
the conservation of the square symmetry of the (002)- and (200)-, the (300)- and (003)-,
and the (201)- and (102)-states remain degenerate, respectively. Also visible in Fig. 2 is
the influence of electron exchange-correlation which shifts all the single particle levels to
lower energy because of the attractive nature of this many-body interaction.

In contrast to the square-gate dot, the quad-gate dot depicted in Fig. 1 (b), has no energy
level degeneracies due to its rectangular geometry, and hence no shell structure as shown
schematically in the inset of Fig. 3 with the ordering of the energy levels. Fig. 3 shows
the variation of the single-particle energy spectrum with Vback for the quad-gate dot. The
variation is qualitatively similar to the square-gate device except that each curve now repre-
sents a spin-degenerate level which reduces the shell structure to a simple superposition of
doubly degenerate (due to spin) states. Because the ratio between the sides of the rectangle
is incommensurable, accidental degeneracies of states are absent from this spectrum for
N = 0. However, they do appear for higher N as the electron-electron interaction distorts
the self-consistent potential. One such instance is seen for 0.943 V < Vback i< 0.946 V,
where the third and fourth energy levels which converge at low bias cannot cross over on
the Fermi level during the charging of the dot. The anamolous "Coulomb degeneracy" is
caused solely by the repulsive Coulomb interaction between levels.

3.2 Double dot

Figure 4(a) shows the Coulomb staircase indicating the variation of the number of electrons
in the double dot (Fig. 1 (c)) with Vback at V, = -0.67 V. For Vback = 0.9769 V, ELAO (0.5) is
just negative, implying that the dot can accept one electron in the lowermost Is-like state.
Since the interdot coupling is very weak each of the dots can be charged simultaneously
with an electron each of spin T" resulting in N jumping from zero to two. This simultaneous
(double) charging persists as long as the two dots are isolated. However, as Vback is increased
to 0.9804 V, when the next charge degeneracy point occurs, only one of the dots can be
charged (with a ,. electron) but not both, due to increased Coulomb repulsion between
the dots. Overcoming this repulsion requires a 0.1 mV increment in Vback resulting in
the termination of double charging, which is evident as a narrow step for N = 3. At
Vback = 0.9805 V, Dot 2 also can be charged with a 4. electron increasing N to 4. Similar
behavior is seen for 5th and 6th spin T electrons, which occupy the first excited (p, -like)
states in Dots I and 2, respectively. The Coulomb repulsion between them is overcome
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Fig. 4. Coulomb staircase diagram for the double-dot for (a) Vt = -0.67 V. The transitions that
do not follow Hund's rules are shown in dashed lines. (b) Vt = -0.60 V.
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Fig. 5. Variation of the total electron spin S in the double dot with N for Vt = -0.67 V (solid line)
Vt = -0.60 V (dashed line).

by a 0.1 mV increment in Vback. Using Hund's rule arguments, the 7th and 8th electrons
are also of T spin occupying the degenerate p,-like states in Dots I and 2 [ ]. Thus
the ground state configuration for N = 8 is spin polarized with four electrons having
t spin. The N = 9 through N = 12, complete the half occupied second shells in the
two dots eventually reverting the double dot system to an unpolarized state. When the
interdot coupling is increased, as in Fig. 4(b), by making V, more positive, double charging
disappears. So also spin polarization in the dot, as the energy levels are reordered and the
degeneracies of the first excited states in both the dots are lifted. Fig. 5 shows the variation
of total spin in the dot for V, = -0.67 V and V, = -0.60 V. For weak coupling the total
spin of the dot increases in steps of h/2 from 0 at N = 5 to 2h at N = 8 as the second
shell in each of the dots is half filled with spins of all the electrons being parallel. For an
increase in the coupling strength between the dots such a spin polarization of the dot is
precluded by a lifting of degeneracy of the p,- and p,-states of the first shell and the total
spin is never greater than h/2.

4 Conclusions

We have investigated the shell structure in planar single quantum dots and observed that it
remains largely unaltered by electron-electron interaction when the dots have a cylindrical
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symmtery, but are drastically altered and lead to accidental degeneracies when the two-
dimensional symmetry is lacking. In double-PQDs, we observe double electron charging
for weak inter-dot coupling, which is terminated as the coupling increases. Furthermore, in
the weak coupling regime, the dot becomes strongly spin polarized for N = 8 in accordance
with Hund's rules. An increase in inter-dot coupling reverts the dot into an unpolarized
spin state.
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